# A Computational Study of the Influence of Boattail Plates on the Trailer Flowfield

Dan Flowers, Jerry Owens, Rose McCallen, Tim Dunn

Lawrence Livermore National Laboratory Livermore, CA

**November 14, 1999** 



## Several approaches are being used to simulate the GTS



#### SNL

Reynolds Average Navier-Stokes (RANS)/ Detached Eddy Simulation (DES)
Compressible Finite Volume Code
Average "Steady" Solution/Unsteady Solution
Widely used - may not predict drag correctly

#### LLNL

Large Eddy Simulation (LES)
Compressible Finite Element Code
Unsteady Solution of large scales/approximation of the small scales
Computationally intensive

#### **Caltech**

Direct Numerical Simulation/ LES
Vortex Method
Gridless
In development

### Turbulent flow contains eddies ranging from largescale to small-scale





Large-eddy simulation captures the large-scale motion and approximates the small-scale motion.

all turbulent motions = large-scale motions + small-scale motions = 'resolved' scale + 'subgrid' scale  $u_{\alpha} = \bar{u}_{\alpha} + u'_{\alpha}$ 



#### **Streamwise Velocity**

#### LES: instantaneous and/or time-averaged with 1 empirical parameter



**RANS:** only time-averaged with many empirical parameters



#### We are focusing on two areas



#### Simulating full GTS geometry

NASA 7'x10' wind tunnel tests

Course mesh ~ 6 million elements

Results will be validated with experiments



#### Effect of boattail plates on aerodynamic drag reduction

Modeling only back end to conserve elements Geometry based on GTS model Investigating fundamental flow phenomenon

### Boattail plates have been shown to reduce drag



Full-scale truck in wind tunnel



Model in wind tunnel



Plates developed by Continuum Dynamics, Inc.

### A recirculation zone forms in the boattail plate offset



This recirculation zone draws the wake in behind the body



## Solving the 3D turbulent flow field requires extensive computational resources



#### **Compressible flow simulation**



Half of 3 million element grid

#### 148 computational domains

148 processors on ASCI Blue massively parallel machine (IBM)



**Domain decomposition** 

## The problem size is approximately 3 million elements with 1 mm wall resolution



Grid on rear of trailer

Refinement at walls and plates



Resolution of the wall determines the time step

## Computations predict the reduced wake size as seen in experiments





## Effect of boattail plate length is being studied



#### **Streamwise Velocity Component**



## Out of plane vorticity in trailer wake



#### **Top View**

Without plates

2" plates

**2.5"** plates







#### **Summary**



Boattail plates have been shown experimentally to reduce drag

FEM/LES is being used to understand the flow phenomena and the effect of plate length

Preliminary results indicate similar trends as the experiments

Validation of simulations with experiments is ongoing